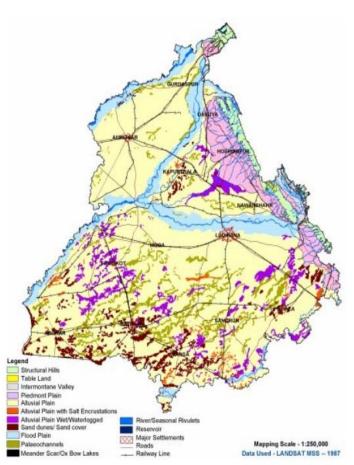


Case studies on groundwater salinity


- Dr. Gopal Krishan, Scientist 'C' National Institute of Hydrology, Roorkee
- Email: drgopal.krishan@gmail.com

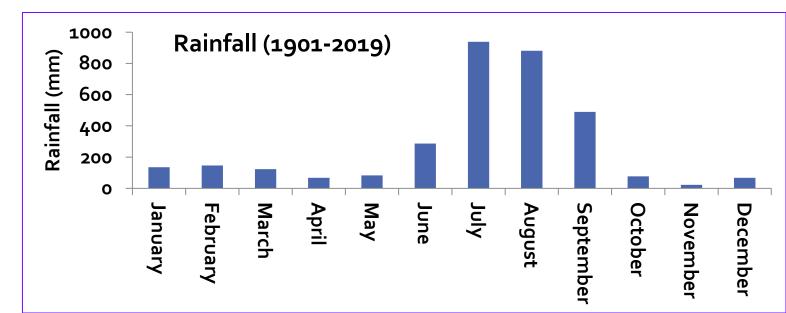
Sponsored by: Punjab State Farmers and Farm Workers Commission

STUDY AREA

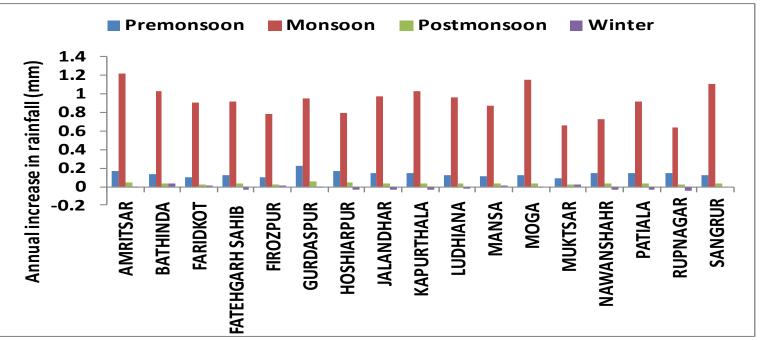
- Punjab comprising 1.5% (50,362 sq. km) area of the country contributing 40–50% rice & 60–65% wheat to the central pool since last 3 decades.
- 3 perennial rivers : Satluj, Beas & Ravi
- 1 seasonal river: Ghaggar.
- Water potential all rivers : 14.54 Million Acre Feet (MAF) managed through wellorganized canal irrigation system.
- However, the available surface water resources of the State are fully committed even though unable to meet further demand of water in irrigation for agriculture which increases the pressure on groundwater resources

Sr. no	Activity	% Progress in the activit	ty till date							
7	Publications 1.	In: Proceedings for Scientif	fic Impacts on a	Rajesh. 2020. <mark>Aquifer saliniza</mark> Historic Landscape America Butte, Montana October 5	n Water Resources					
200	ଗରଗରଗରଗରଗର	୶୶ୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠ	ax							
				20 Conference - Butte, Montana	8 th October, 2020					
		A SECTION OF THE								
ଽଽ୲ଽ୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ୶୲ଽ		ATER RESOURCES		auifer caliniza	tion in					
SIST	Sincerely Appreciates		Aquifer salinization in							
SISSI	D. C.	1 K 1	NOS I	Punjab, Ind	idia					
XIXI		ppal Krishan		Dr. Gopal Krishan (Scientist)						
XIXI	20	acts on a Historic Landscape		National Institute of Hydrology, Roorkee Email: drgopal.krishan@gmail.com	ə, India					
SSISS	MONTANA		X		Study Team:					
2023			N N N N N N N N N N N N N N N N N N N		Sudarsan (NIH, Roorkee Sidhu (PSFC, Punjab)					
XIX	AWRA	Kin Snudgun 10/9/2020	SIG	Rajesl	h Vashist (DoAFW, Punjab)					
	<u>MAMMAMMAMMA</u>	NAMANANANANANANANANANANANA	Organized by American Wo	, ater Resources Association						

1.Generate groundwater level scenarios based on historical data

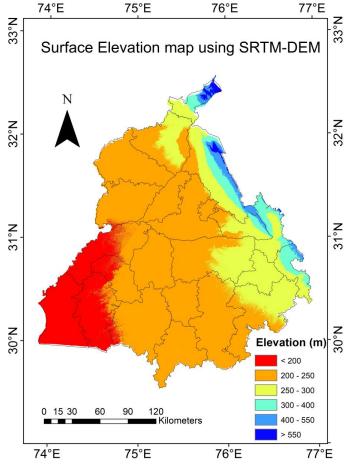

Data Collected/Analysed/ Maps Prepared

- Rainfall variations
- Digital Elevation Model (DEM)
- Soils
- Geomorphology/Lithology/Aquifer systems
- Land use/Land cover maps
- Groundwater level variation



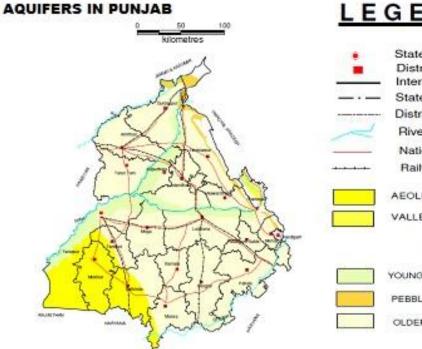
80% during July to September

Rainfall trend analysis

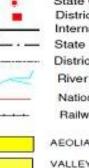

Trend detection analysis of rainfall of Punjab has indicated an increasing rainfall trends in annual, monsoon, pre-monsoon and post-monsoon seasons.

Winter rainfall is found decreasing in 11 districts. In future, the variability of rainfall is likely to increase in Punjab. Rainfall has a rising trend at some districts in south-west Punjab namely Bhatinda & Moga which currently receive low annual rainfallKrishan et al., 2015

DEM


Punjab is an extensive alluvial plain gently sloping from about 650 metres above sealevel in the northeast and the north adjoining Himachal Pradesh and Jammu and Kashmir to about 180 metres in the southwest.

The south-western fringe of the region is desertic and undulating, but has gradually been becoming level with the extension of cultivation and irrigation.


DEM downloaded from USGS Earth Explorer (<u>https://earthexplorer.usgs.gov/</u>) Mapped using ArcGIS 10.4

Aquifer systems

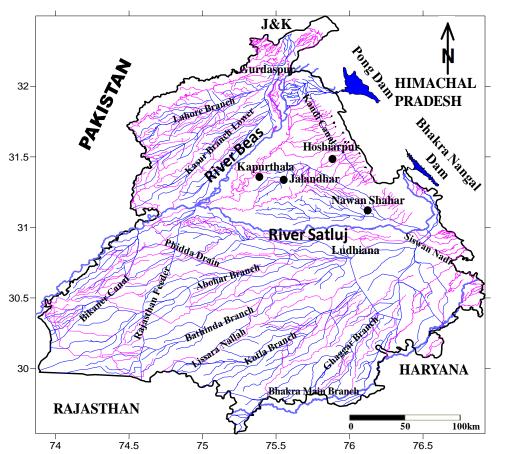
LEGEND

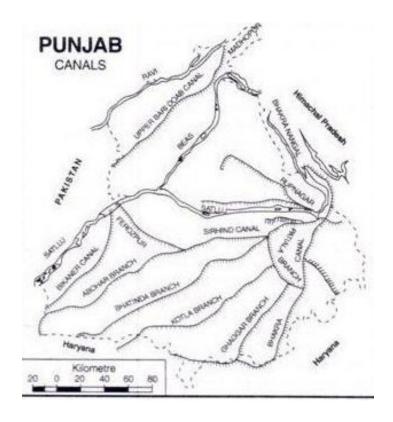
VALLEY FILLS (AL06)

AQUIFERS

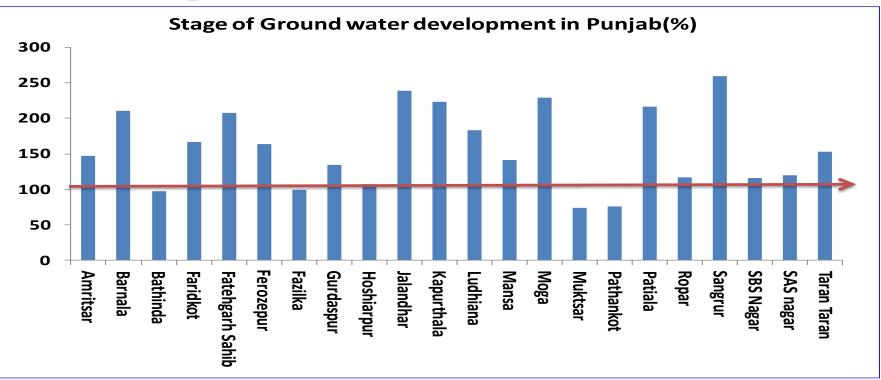
YOUNGER ALLUVIUM (AL01)

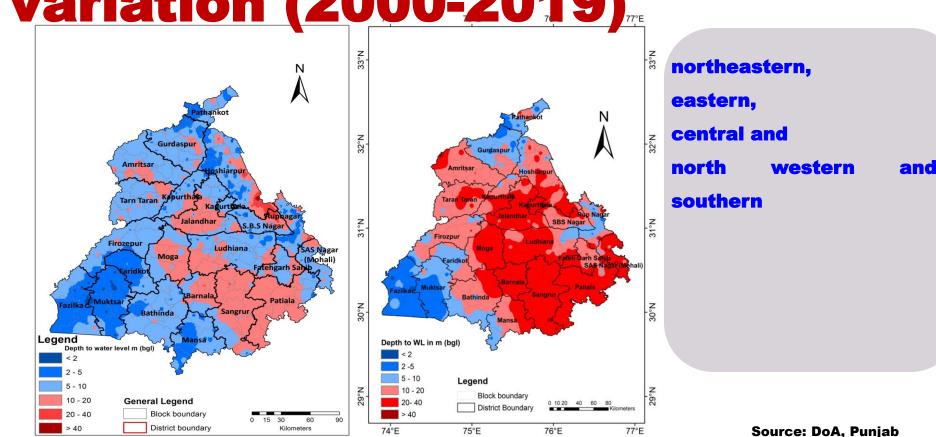
PEBBLES/ GRAVELS (AL02)


OLDER ALLUVIUM (AL03)


In general single and multiple aquifers systems have been identified

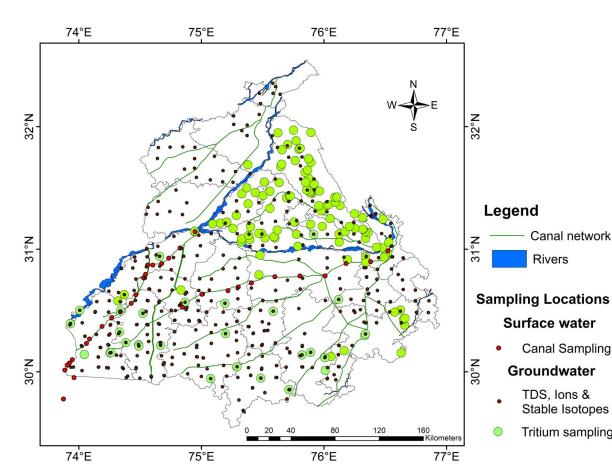
In major part of the state multiple aquifer system exists

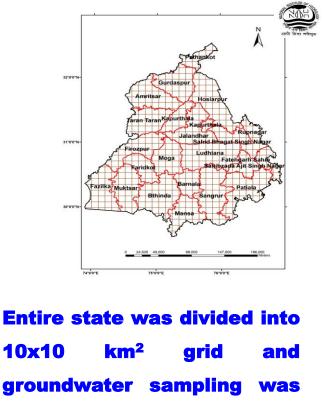

Punjab Drainage


Stage of groundwater development

Groundwater level spatial variation (2000-2019)

2. Assess the extent of water logged and groundwater saline zone at various aquifer depths,


3. Investigate and identify the cause Of salinity problem and its expansion in the area,



Methodology/ Data

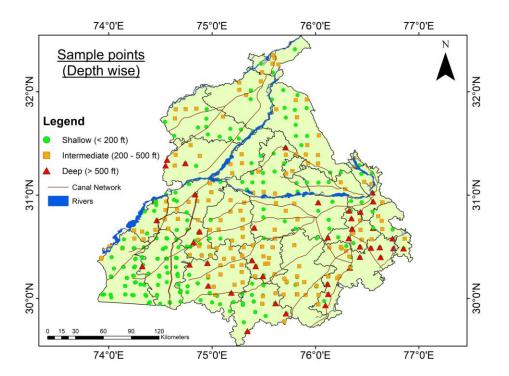
- Ions distribution
- Hydro-geochemical processes and indicators
- Isotope characterization

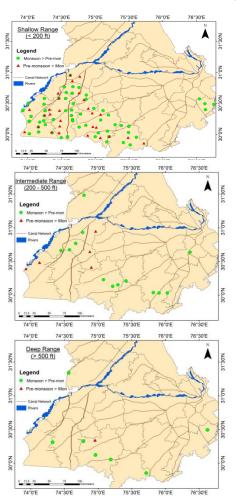
Analytical Results

carried out in each grid

Canal network

Canal Sampling

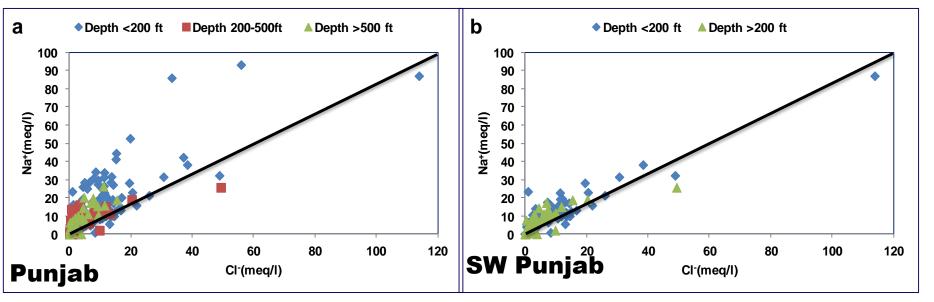

Tritium sampling


TDS. lons & Stable Isotopes

Rivers

Canal sampling at an interval of 20 km

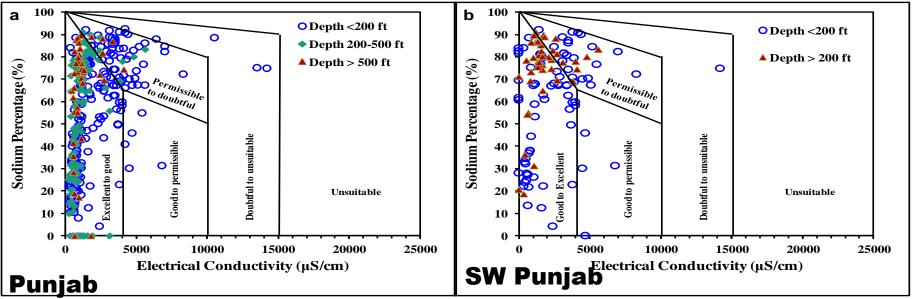
Groundwater sampling


प्रतिनिधित करते है। अपने दिसा मध्येमुख

lons concentrations

								n	ng/l							
		Ca ²⁺				Mg	2+				Na⁺			K⁺		
	D1	D2	D 3	D	01	D	2	D3	D1		D2	D 3	D1	D2	D3	
Min	5.2	7.8	10.3	5	1.0	3	.6	3.7	1	.0	2.5	13. 6	0.5	0.7	0.9	Э
Мах	297.4	114.8	81.3	2	145.4	88	8.5	86.4	214	45.4	590.3	604.6	489.3	151.	8 88	.9
Mean	50.2	37.9	32.8	3 2	246.5	26	6.0	27.3	24	6.5	113.3	185.3	16.1	6.3	6.	5
11									mg/	I						
		HCO3 ⁻			F.			ç	<u>CI-</u>			SO4			NO ₃ -	
	D1	D2	D3	D1	D2	D3	D1	D	2	D3	D1	D2	D3	D1	D2	D3
Min	108.0	55.3	114.3	0.1	0.02	0.1	2.	2	1.9	13.6	5.7	2.1	5.0	0.6	0.3	0.8
Max	1234.7	711.3	619.7	9.5	7.9	4.7	404	0.8 17	750.1	604.6	4933.9	1814.4	1091.2	497.0	270.0	88.0
Mean	336.4	325.3	270.1	1.7	1.4	1.2	215	5.2 8	30.4	185.3	374.9	124.9	220.9	58.1	35.5	27.1

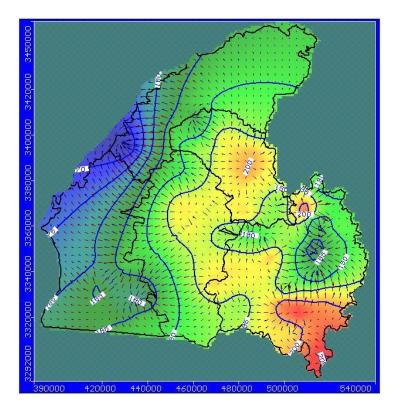
D1 = Depth < 200 ft, n= 270; D2= Depth 200-500 ft, n= 202; D3= Depth > 500 ft, n= 60


Hydrogeological processes

Na⁺ vs Cl⁻ used to indicate the source of Na⁺ ions in groundwater •values close to the equiline suggest halite dissolution •values >1, silicate weathering or cation exchange silicate weathering along with Na+, high HCO³- in groundwater

Hydrogeological processes

Shallow groundwater samples (<200 ft) fall under the category of permissible to doubtful and doubtful categories for irrigation use while majority of samples fall under the category of good to excellent.


4. Identify the most vulnerable zone(s) of advancing groundwater salinity

5. Investigate impact of excessive groundwater pumping in central Punjab on the movement of groundwater increased salinity, and

Groundwater modeling

The overall groundwater flow direction is towards the SW direction.

6. Suggest cost effective and eco-friendly management strategy for control of groundwater salinity

Types and Causes of salinity

Concentration of salts in water; contains significant amounts (referred to as "concentrations") of dissolved salts, the most common being the salt we all know so well—sodium chloride

- (NaCI).
- natural/primary salinity caused as a result of dissolution of minerals (e.g. halite, anhydrite, carbonates, gypsum, fluoride-salts, and sulphate-salts) from bedrocks or accumulation of salts from rainfall built up over time, hence the residence time of these may be quite long ranging from thousands to million of years
- dryland/secondary salinity caused due to rising water levels which bring salt to the surface, In high rainfall areas the salts are percolated down while in arid and semi arid regions these remain on the surface
- tertiary/irrigated salinity caused as a result of repeated multiple irrigation of water where salts remain after evaporation and accumulate over time. These accumulated salts leech down to groundwater with rainfall.

Types and Causes of salinity

Reviewing of the suggested causes

paleohydrological link with the Arabian sea; evaporative enrichment of salts and anthropogenic pollution

Proposed recommendations

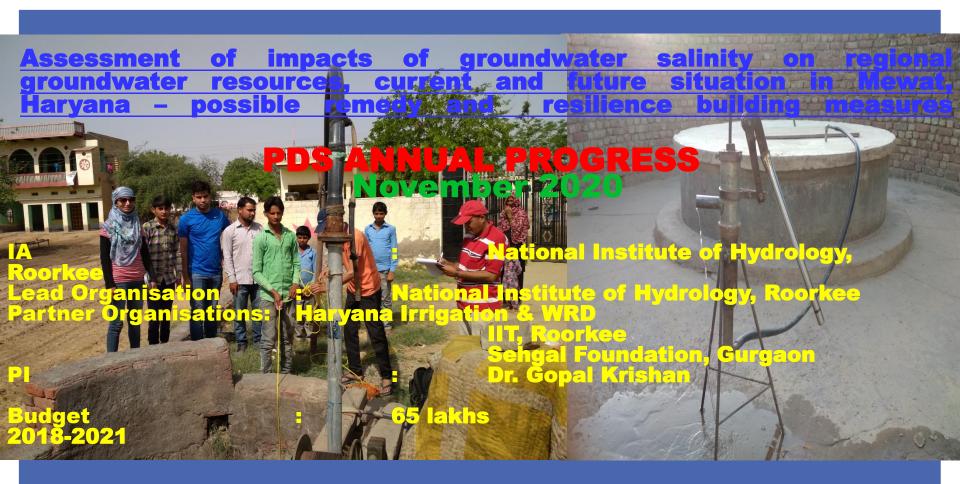
Augmentation of groundwater

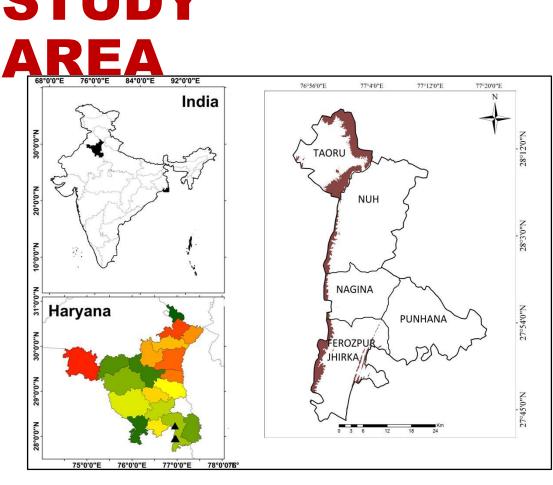
Water management options

Conjunctive use (or blending) in terms of water quality could be practiced to meet demand for non-drinking purpose. This could be achieved by blending poor quality water (brackish) groundwater with better quality water from canals to dilute the salinity. Such water could be used for horticulture, overland applications, gardening and cleaning purposes. This option can be tried in South west Punjab area where groundwater with EC < 4000 μ S/cm is available. The saline water that will be pumped out could be replaced in due course of time by the freshwater through precipitation recharge or subsurface flow; this can be done by a careful planning and execution.

Regulation and limiting groundwater usage by enforcing groundwater legislation for future expansion of construction of wells farther inland, educating the farmers to reduce their present withdrawal to achieve groundwater balance and adopting water saving practices

Crop adaptation or change in cropping pattern to manage salinity in soils and water, through introducing crops with lower water requirements; introducing salt tolerant and semi salt tolerant crops may be one of the options Aquifer Storage and Recovery (ASR) can first of all be approached as a storage technique where the aquifer is used as an underground reservoir.


Changes in vegetation can also help improve the water and salt balances in soil, the vadose zone, and shallow groundwater. Since deep tree roots can efficiently pump underlying shallow groundwater, afforestation of grasslands reverses the vertical flux of groundwater from the soil to the saturated zone


Mass awareness programs

STUDY GROUP

	PRINCIPAL INVESTIGATOR							
1	Dr. Gopal Krishan	Scientist C and Project Leader, Groundwater Hydrology Division						
	CO-INVESTIGATORS							
2	Dr. S.K. Jain	Ex-Director, NIH						
3	Dr. N.C. Ghosh	Principal, Bengal Institute of Technology, Kolkata; Ex-Scientist G & Head, Groundwater Hydrology Division						
4	Er. C.P. Kumar	Ex-Scientist G & Head, Groundwater Hydrology Division						
5	Dr. M.S. Rao	Scientist F, Hydrological Investigation Division						
6	Dr. Anupma Sharma	Scientist F, Groundwater Hydrology Division						
7	Dr. Surjeet Singh	Scientist F, Groundwater Hydrology Division						
8	Dr. Sumant Kumar	Scientist D, Groundwater Hydrology Division						
9	Smt. Suman Gurjar	Scientist C, Groundwater Hydrology Division						
	External Expert Support							
1	Dr. Bhishm Kumar	Consultant IAEA, Vienna, Austria, Ex. Scientist 'F' and Head, HID, NIH						

		Supporting Staff						
	10	Smt. Anju Chaudhry	SRA, Groundwater Hydrology Division					
	11	Sh. Sanjay Mittal	SRA, Groundwater Hydrology Division					
	12	Sh. Mohar Singh	PRA, Hydrological Investigation Division					
	13	Sh. S.L. Srivastav	SRA, Groundwater Hydrology Division					
	14	Sh. Vipin Agarwal	SRA, Hydrological Investigation Division RA, Hydrological Investigation Division					
ł	15	Sh. Vishal Gupta						
ł	16	Sh. Raju Juyal	SRA, Computer Centre					
	17	Sh. Sudarsan N	JRF, Groundwater Hydrology Division					

General & Hydrological Features 27° 39' & 28° 20' N, 76° 51' & 77° 20' E Population= 10,89,263(2011, census) Area(Sq. Km):1,859.61 Average rainfall: 594 mm Forest: 30, cultivable area:

GROUND WATER RESOURCE AND DEVELOPMENT POTENTIAL

	Assessme	Net	Existin	Existing	Allocati	Net	Stage of	Category
	nt	Ground	g	Gross	on for	Ground	ground	of Block
	Unit/Bloc	Water	Gross	Ground	domesti	Water	water	
	k	Availabilit	Groun	Water	c and	Availabilit	Develo	
		У	d	Draft	industria	y for	p-	
			Water	for all	1	future	ment in	
			Draft	uses	require	irrigation		
			for		ment	developme		
			irrigati	Ham	supply	nt		
			on		upto			
					next 25		%	
		Ham			years			
			Ham		Ham	Ham		
	Ferozpur	4727	2741	3011	450	1536	64	Over
	Jhirka							Exploited
	Nagina	4185	1813	2025	354	2018	48	safe
	Nuh	4526	1701	2011	507	2318	44	Safe
J	Punhana	5420	3724	3910	323	1373	72	Critical
	Tauru	2765	3301	3496	195	-731	126	Over
								Exploited
	Total	21623	13280	14453	1830	6513	67	

CGWB, 2012

Journal of Hydrology: Regional Studies

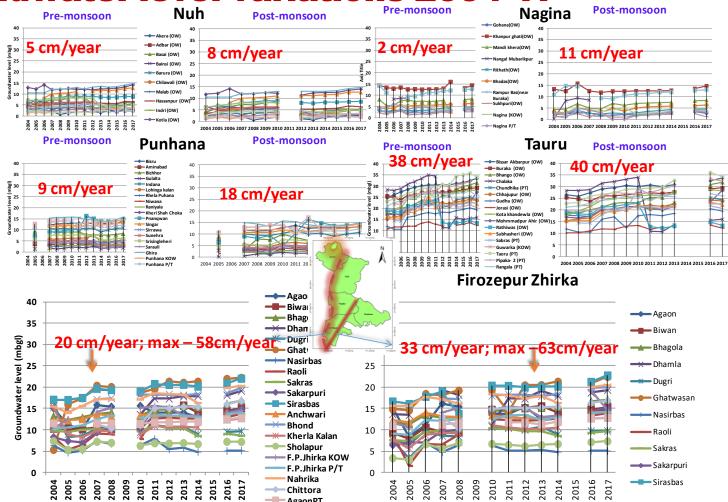
journal homepage: www.elsevier.com/locate/ejrh

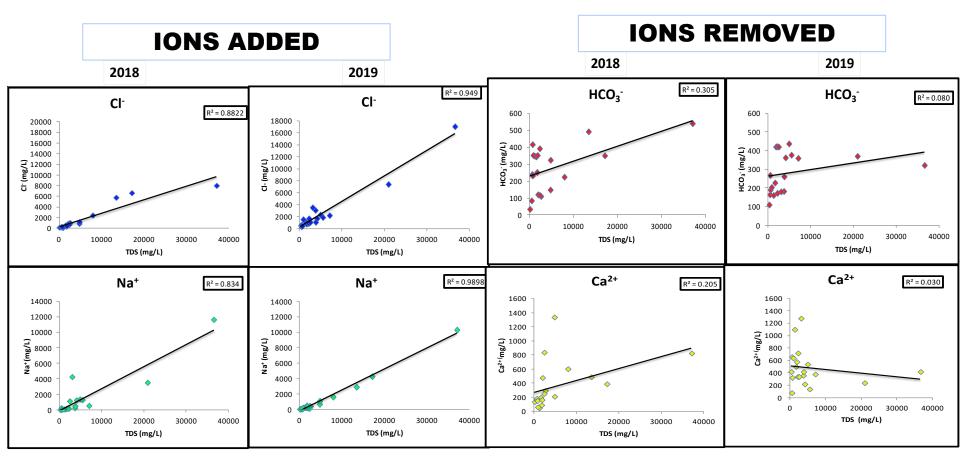
Identifying the seasonal variability in source of groundwater salinization using deuterium excess- a case study from Mewat, Haryana, India

G. Krishan^{a,*}, G. Prasad^a, Anjali^a, C.P. Kumar^a, N. Patidar^a, B.K. Yadav^b, M.L. Kansal^b, S. Singh^a, L.M. Sharma^c, A. Bradley^d, S.K. Verma^a

^a National Institute of Hydrology, Roorkee, Uttarakhand, India ^b Indian Institute of Technology Roorkee, Uttarakhand, India ^c Sebgal Foundation, Gurgaon, Haryana, India ^d The University of Iowa, Iowa City, Iowa, 52242, USA

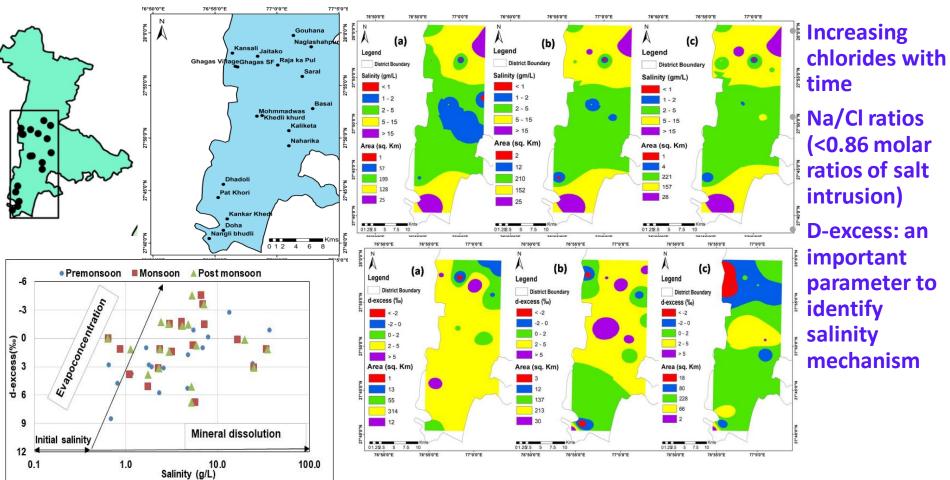
J. Earth Syst. Sci. (2020)129 109 https://doi.org/10.1007/s12040-020-1380-6 © Indian Academy of Sciences




Understanding stable isotope systematics of salinity affected groundwater in Mewat, Haryana, India

GOPAL KRISHAN^{1,*}, N C GHOSH¹, C P KUMAR¹, LALIT MOHAN SHARMA², BRIJESH YADAV³, M L KANSAL³, SURJEET SINGH¹, S K VERMA¹ and GOKUL PRASAD¹

¹National Institute of Hydrology, Roorkee, Uttarakhand 247 667, India.
 ²Sehgal Foundation, Gurugram, Haryana 122 003, India.
 ³Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India.
 *Corresponding author. e-mail: drgopal.krishan@gmail.com


Groundwater level variations 2004-17

Variations in Salinity

a-pre monsoon; b-monsoon; c- post monsoon

Salinity identification/understanding

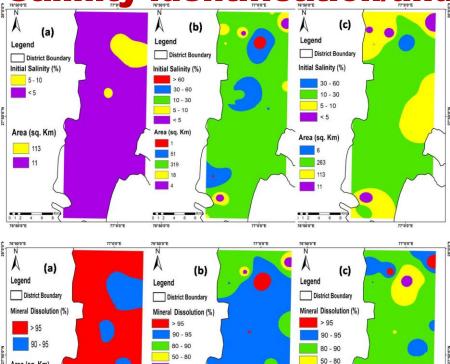
< 50

Area (sq. Km)

6 34

311

28


.....

76°50'0"E

77*0'0"E

012 4 6

77'0'0"E

< 50

Area (sq. Km)

3

78

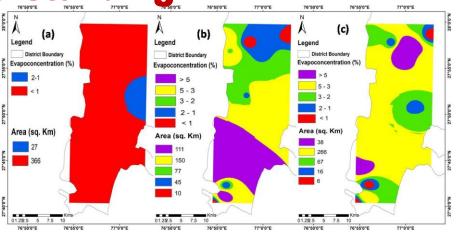
291

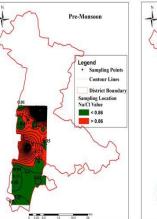
14

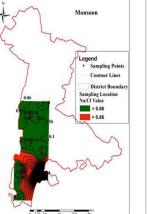
0 1 2 4 6 8

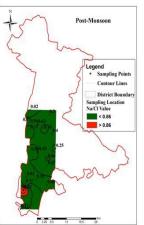
76°50'0"E

77°0'0"E

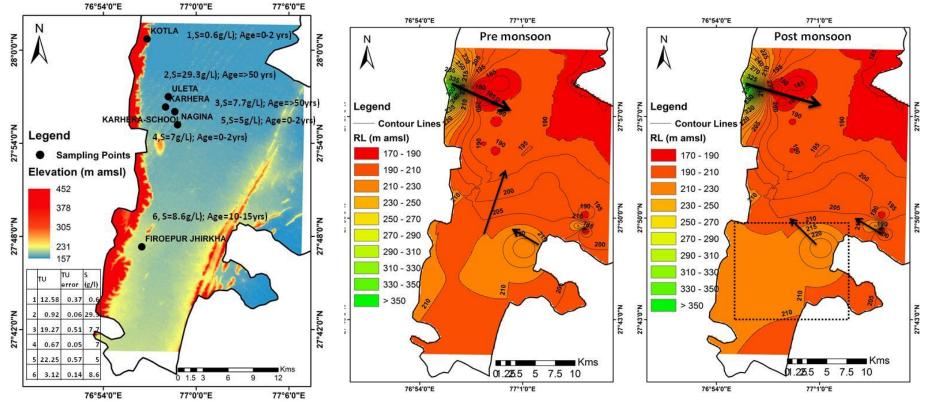

Area (sq. Km)

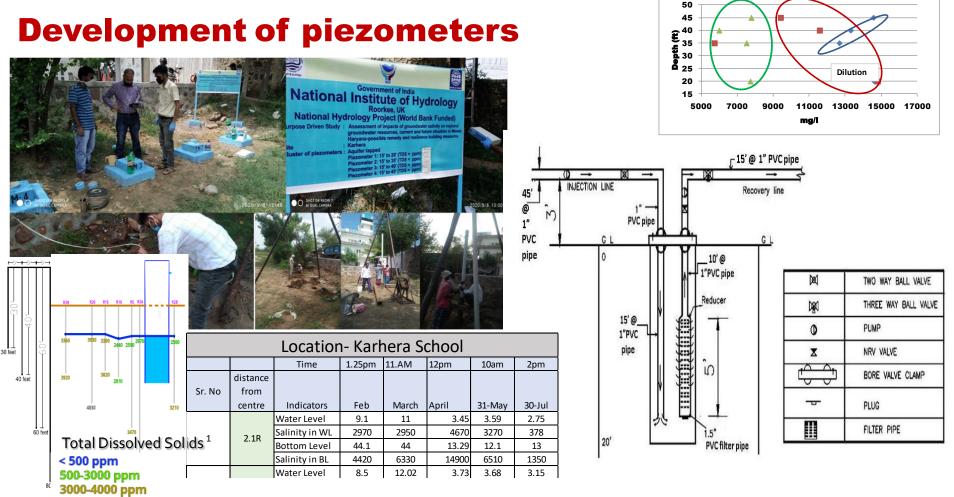

347


46


012 4 6 8

76'50'0"E





Salinity identification/understanding

◆ August September ▲ Chloride_August

> 4000 ppm

Ground Water Recharge, Reduction in Soil Salinity solutions and way forward for Indian Sunderbans

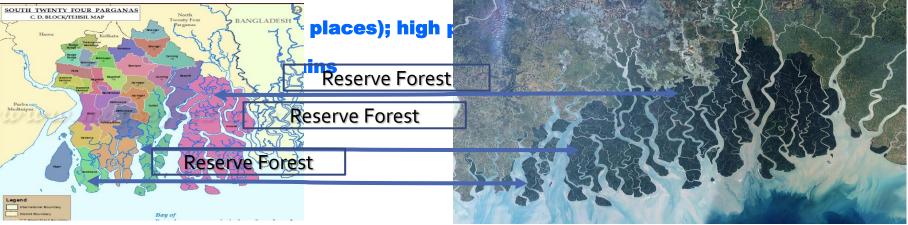
British Geological Survey Espert | Impartial | Innovative

Ground Water Concerns in Indian Sundarbans

- Increased pressure on sweet water sources lead to ground water exploitation by farmers (Ground water depletion rate is 3m and 2.5m per annum in 1st and 2nd aquifer, respectively) (CGWB Report, 2019)
- Increased salinity (2.2-4.1 dS/m) in shallow aquifers with increased abstraction
- Alteration of the nature of surface water from sweet to brackish (>15-20ppm) during summer and winter seasons
- Toxic effect of salinity on farm lands impacting towards crop loss (34-40% crop loss occur during summer seasons)
- Presence of sodic-soil layer at 6-8ft depth (CSSRI Report, 2016) in majority of the islands
- Periodic inundation by saline water in every 5 years leads to river embankment failure in Indian Sundarbans (IPCC Dissemination Report, 2019)
- Piezometric heads failing from as early as Mid-February to Mid-June every year
- Trading of irrigation water taking place from ground water and surface water sources (during February to June every year)

Change in nature of surface water

High salinity and crop loss


Periodic Inundation

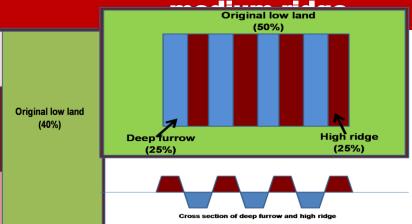
Drv and Saline soil

Geographical area

- Sundarbans the mangrove delta of Ganga Bramhaputra
- Spread across India and Bangladesh it constitutes 9 % of total area of West Bengal
- Two districts- North 24 Parganas (9 blocks) and South 24 Parganas (13 blocks) –
 54 habituated islands
- Mangrove coverage 4463.89 sq. Km. in Indian Sundarbans

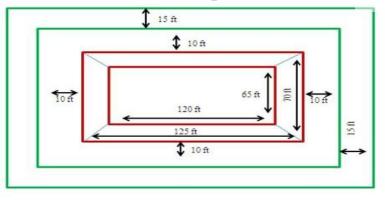
Haldar & Debnath 2014

Restoring coastal delta by strengthening drainage channels


Farm pond S technique

Farm Pond

(20%)


Medium land (20%)

Shallow furrow and

Agroforestry system in coastal salt

Brackishwater aquaculture

than 50 cm to grow the tree species.

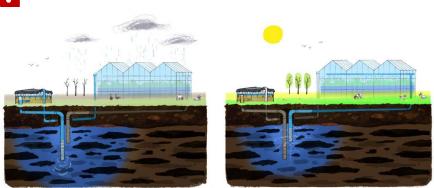
Land shaping provide less salinity build up and higher soil moisture during dry months.

Agro-forestry	trees	like,
Eucalyptus,	Acacia	
auriculiformis,	Casuarina,	
Herietiera,	Br	ugeria,

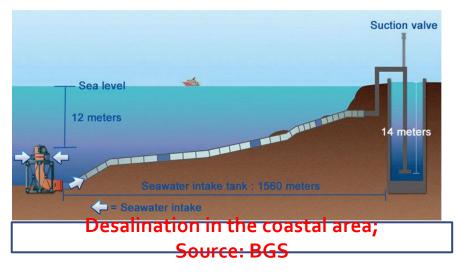
Vale compare 9 Compare com ha

Surface water management under saline conditions

Why Five-square model relevant for the area?

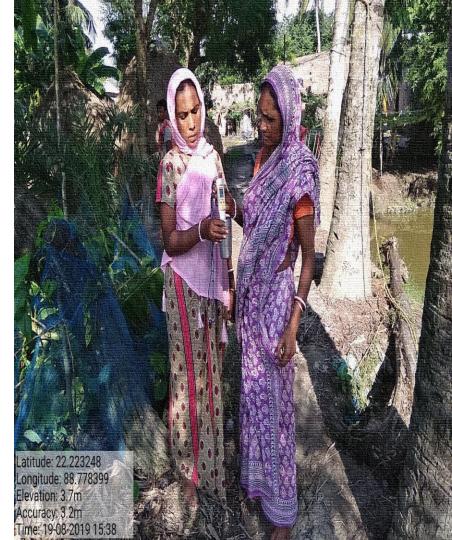

- Five-square model is known for salinity check and reducing water stagnation in Indian Sundarbans' context
- Model is included as one of the scheduled activities under MGNREGA
- Known for creating impact on cropping intensity and non-cyclic salinity reduction as well
- Positive impact on reducing forced migration and diversifying livelihood vocations
- Stable source for water supply for ASR during rainy season

Economics of Surface Water Management


- Land use management cost for 0.34acre land is INR 90,000/- at current price
- Benefit out of the farming system is expect INR 65000-70000/per annum
- Break Even in one and half years
- Annual maintenance of the system is as low as INR 5000/-
- Benefit cost Ratio for the system is 2.88 per Ha
- Increase in cropping intensity for the system is expected 30-35% per Ha
- Increase in total production is expected 35-40% per Ha
- Expected incremental net income per Ha is INR 2-2.5 Lacs

Ground Water Stress and Probable Solutions

- Increasing availability of surface water
- Aquifer storage and recovery to increase sweet water availability in a saline aquifer
- Salinity management through surface water management
- Crop water management
- Desalination of river water and supply through pipes (it is not possible in Indian Sundarbans due to high silt content in the water)
- Protection of river embankment to reduce cyclone/flood impact



ASR in the coastal area; Source: BGS

Economics of ASR

- Sweet water production cost/ cost calculation for ASR
 - Cost of water harvesting structure+ solar pump (0.1-0.25HP)+ injection and recovery pipes+ cost of valves, taps etc = (annual operation cost+ maintenance cost) / annual total freshwater production
 - Benefit Cost Ratio per Ha = 160000 / 60000 = 2.66

Proposed benefits

Maximization of sweet water availability for critical irrigation in summer and winter

Increased access to fresh drinking water by 30% per HH

Storage of ground water in ASR against adverse climatic conditions common in Indian Sundarbans

Expected increase in cropping intensity by 35-43% per Ha

Expected increase in overall farm production by 23-26% per HH

Improved net income of the farmers with cost 2.66 benefit-cost ratio per Ha

Funding from PSFC; NHP (WB); IUKWC BGS RD, NWR CGWB (Chandigarh) Prasari